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Abstract  

To determine the chirality sense in tetrahedral atoms is necessary to put the minor 

priority substituent far from the viewer, but sometimes two-dimensional projections 

of stereogenic centers do not accomplish this requirement, being necessary to 

rotate mentally the molecule up to obtain the correct perspective. Instead of that 

mental procedure (that is quite difficult for many students) an even number of 

exchanges can be easily done. Bases and notation for this method are provided. 
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Introduction 

The chirality, from the Greek word chair meaning hand, is the property of an object 

to be nonsuperimposable with its mirror image. In organic molecules, this property 

is sometimes due to the presence of a chiral carbon (also named as chiral or 

stereogenic center), a tetrahedral carbon atom that supports four different 

substituents (Wade, 2003). 

The substituents linked to this atom can only be arranged in the space in two 

different ways (figure 1). In order to distinguish them, in 1956, Cahn, Ingold and 

Prelog proposed a system of nomenclature (named “absolute nomenclature”), in 

which the substituents are classified by priority order: 1>2>3>4 (or a, b, c and d, 

respectively) (Cahn, 1956), in such way that since a point of view opposed to the 

substituent of the minor priority (4), the orientation of 1-2-3 occurs in the clockwise 

or counter-clockwise sense. In the first case the R chiral descriptor is assigned and 

S in the second one (figure 1). These two letters comes from Latin words rectus and 

sinester, meaning right and left, respectively. 



 

Figure 1. R and S chiral descriptors for a stereogenic tetrahedral center depending 

on the clockwise or counterclockwise rearrangement of 1-2-3 carbon’s 

substituents (where the priority order is 1>2>3>4 and 4 is located far 

from the viewer). 

 

However, it is very well known that many students experience difficulties in 

determining the chirality when the minor priority substituent is not projected far from 

the viewer. A proof of this fact is the different 2D and 3D attempts aimed to 

overcome this difficulty (Aalund, 1986; Ayorinde, 1983; Beauchamp, 1984; Bhushan, 

1983; Brun, 1983; Bunting, 1987; Cahn, 1956; Dietzel, 1979; Epling, 1982; Garret, 

1978; Idoux, 1982; Mattern, 1985; Reddy, 1989; Siloac, 1999; Thoman, 1976; Wang, 

1992; Yongsheng, 1992). 

Surprisingly, the same authors (C-I-P) discovered that an Even Number of 

Exchanges, ENE, between any pair of substituents of a chiral carbon drawn in 

Fischer’s projection do not alter its absolute configuration and they published this 

fact in the same article (Cahn, 1956), but they did not give any theoretical nor 

factual support. That is probably the reason because the ENE method, which is 



applicable whatever be the chiral carbon’s projection, is not mentioned in the 

majority of the organic chemistry text books and in consequence many teachers do 

not know nor use it. So, the bases of the ENE method and three choices to indicate 

it are presented in this paper. 
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ENE method: bases and notation 

When a chiral center (figure 2a) is reflected on a mirror, 1, the arrangement of its 

substituents is transposed (figure 2b) and it is not superimposable with the original. 

The initial molecule and the reflected one are named as enantiomers. Note that a 

new reflection on a 2 parallel to 1 does the substituents come back to the initial 

position (figure 2c), meaning that the original enantiomer is obtained.  
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Figure 2. Reflecting a chiral tetrahedral center (a): The first reflection, 1, inverts its 

configuration in (b), while the second one, 2, restores it (c  a). 

 

By the other hand, the original configuration is also obtained if the second reflection 

is not applied in the same orientation that the first one, but in the mirror 3 or 4  

perpendicular to 1 (figure 3b-c and 3b-d, respectively). 
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Figure 3. The application of a second reflection restores the original configuration of 

the chiral carbon even if it is not done on a parallel mirror to the first one. 

In this case the result of 1  followed by 4 can be seen directly (d  a), 

but to check the result of 1  followed by 3 is necessary to rotate by 180° 

the molecule c (c = a). 

 

Observe in figure 4 that the translation and application of 1 and 3 since the inner 

of the molecule give the same result that their application since the outer. Moreover, 

the order of the reflections was exchanged to illustrate that the process is 

commutative ( 1 + 3 = 3  + 1).  



At this point is necessary to introduce a little change in the notation of 1, 2 and 3 

because they are not symmetry but chirality planes. They are labeled in the 

following as n*.  
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Figure 4. Reflecting a chiral center on the mirrors 3

*
 and 1

*
 translated to the inner 

of the molecule. The labels n
*
 are used to distinguish these chirality 

planes from symmetry planes. Contrast with figure 3a-b-c to check out 

the commutability of the process. 

 

In accordance with figures 2-4 is possible to postulate:  

“An even number of reflections carried out onto a chiral molecule 

does not alter its initial configuration independently of the position 

and the order of application of the mirrors”. 

A simple demonstration of this fact can be performed reflecting a chiral object onto 

an arrangement of two mirrors having a common line. At a 0< <90° angle is 

possible to appreciate at least one image identical to the real object (figure 5).  



 

Figure 5. The reflection of a can onto two mirrors disposed at a 90° angle affords 

two enantiomorphic images (left and right) and one image identical (top) 

to the original object (down).   

 

By the other hand, the application of n
*
 can be seen as a permutation that merely 

exchanges ("the place of") two substituents. In the figure 4 for example, the 

application of 3

*
 moves substituent 4 to the position that substituent 1 was in and 

vice versa. These permutations (also called transpositions) are cycles of length two 

(two-element swaps) and they are written as a matrix of 2 x n elements, in which 2 

is the number of rows  and n is the number of columns (meaning the number of two-

elements swaps). In this manner the application of 3

*
 and 1

*
 are equivalent to the 

permutation of substituents 4-1 and 2-3 and they are schematized in figures 6a-b 

and 6b-c as a 2 x 1 matrices; and 3

*
 + 1

*
 as a 2 x 2 matrix in figure 6a-c. So, 

there is an analogy between both types of operations: The application of an even 

number of them does not alter the initial configuration of a chiral carbon. 
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Figure 6. Viewing reflections as permutations whose 2 x 1 and 2 x 2 matrix notation 

are equivalent to the application of n and n + m, respectively. 

A second notation to describe a permutation is a two-line representation (figure 7c 

and 7d), in which the initial position of the substituents is in the first line (S0) and the 

final position is in the second line (S1), in such away that the swaps are symbolized 

by means of lines or arrows between them (Tumarello, 2006). Bearing in mind the 

objective of the ENE method (to translate the minor priority substituent to the back 

side), a little modification was introduced in the initial state with respect to that 

normally used in permutation theory: the numbers are written in reverse sense, it 

means, in the order 4, 3, 2, 1; in this manner the first swap will always include the 

minor priority substituent (e.g. 4 - 1). 

With respect to the final state, one of two choices can be followed:  

1). The new position of the substituents is written just below the old position 

independently of the order of the numbers (figure 7c);  



2). The order of the numbers is retained (figure 7d).  

Although the choice 1 is more direct than 2, probably this one is more appropriate 

for our objective because the number of intersections of the arrows indicates the 

parity order of the swaps.       
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Figure 7. Representing the even number of exchanges as a two-line diagram, in 

which S0 and S1 are the initial and final positions of the substituents. In 

choice (c) the new substituent’s position is just below the old one, while 

in (d) the order of the numbers is maintained and the parity order of the 

swaps is indicated by the number of intersections of the arrows. 

 

May be the two-line representation is more simple than the matrix notation when 

one of the substituents remains unchanged because in this case is necessary to 

include a 3-cycle and 1-cycle matrices (figure 8). For example, if the substituent 2 is 

not moved in our model problem, the two notations will be as follows:  
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Figure 8. The application of an ENE that excludes the substituent of priority order 2. 

The whole process of permutations is indicated at the bottom in the two-

line diagram and as a combination of 1-cycle and 3-cycle matrices. 3-

cycle matrix means the translation of 4 to 1, 1 to 3 and 3 to 4, and the 

even parity is got with the swap of 2 with itself.1 

 

In a practical sense, a third more pictorial and simple notation can be introduced: 

Just indicate the transpositions by means of curved arrows (figure 9a). 

 

Figure 9. Indicating an even number of transpositions simply with curved arrows. 
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Procedure to determine in 2D, the chirality in a given tetrahedral stereogenic 

center by the ENE method. 

Because the ENE method works in any projection in which the chiral center is given, 

the procedure is illustrated this time for an enantiomer of 2-hydroxipropanoic acid 

drawn in Fisher’s projection as follows: 

1. Interpret the projection in which the chiral center is given (figure 10a-b).2 

2. Change chemical symbols by priority numbers and localize the minor priority 

substituent (figure 10b-c).3 

3.  Swap the minor priority substituent with any other localized at the back side (In 

our example there are two choices: 4-3 and 4-2 transpositions). 

4. Swap the other pair of substituents to restore the initial configuration (In the first 

choice 2-1 transposition is done and 3-1 in the second one (figure 10c-d and 

10c-e, respectively)).4  

5. Once the minor priority is at the back side and an even number of exchange is 

done, check out the orientation of 1-2-3 and assign the corresponding chiral 

descriptor (figure 10d and 10e). 
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Figure 10. Illustrating the ENE method to determine the chirality of an enantiomer 

of 2-hydroxipropanoic acid, drawn in Fisher’s projection: In (a-b) the 

projection is interpreted; in (c) the substituents are represented by their 

priority numbers; in (c-d) the ENE is done and in (d) the chiral descriptor 

is assigned. Observe that in (c-e) is followed another possibility to put 

the minor priority substituent at the back side.   

 

It is necessary to mention that in a given projection is not always so easy to find and 

drawn the position of the mirrors that reproduce the exchanges. For example in the 

last problem the mirror that exchanges 4-3 contains to the substituents labeled 1 

and 2 and bisects line 4-3, while the other mirror that exchanges 2-1 contains 3 and 

4 and bisects line 1-3. It means that both mirrors are tilted with respect to the plane 

of the paper and are mutually orthogonal. Fortunately, the same method help us to 

put the chiral cabon’s substituents in an adequate position to drawn those mirrors in 

an easily way (figure 11b) 
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Figure 11. Using the ENE method to find the positions of the mirrors that exchange 

the substituents of the chiral carbon described in figure 10c-d. From this 

picture (b), the ENE method is applied to determine the chirality in (c). 

 

Finally, in order to avoid misconceptions it is important to leave in clear that the 

exchanges between the chiral carbon’s substituents is not a real process as it 

occurs in other atoms such as in some pentacoordinated phosphorous (Berry, 

1960). 
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Conclusion 

The method of Even Number of Exchanges of chiral carbon’s substituents is a very 

simple way for translating its minor priority substituent to the back side without a lost 



of its original configuration. It works with any projection in which the tetrahedral 

stereogenic center was given and the method can be seen as the product of an 

even number of reflections, independently of the sequence and position of the 

mirrors. 

Finally, the use of any of three notations (two of them coming from permutation 

theory) for representing the ENE were suggested. 
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1
 Note in this case that the even number of two-element swaps is also equivalent to a 120° clockwise rotation 

around an axis parallel to the bond line 2-C. This was treated by Eliel, for a chiral cabon drawn in Fischer’s 

projection, as a single permutation of three-elements (Eliel, 1994, p. 61). Also in this case the parity is even: 
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2
 In our experience, some errors in determining the chirality of a tetrahedral stereogenic center are due to an 

incorrect interpretation of the projections being the wedge projection the more understandable for our students.   
3
 If the minor priority substituent is located far from the viewer determine directly the chiral descriptor as it is 

illustrated in figure 1. 
4
Although to restore the original configuration is valid to exchange any pair of substituents, the swap of the other 

pair is recommended for simplicity.  


